
Automated Mobile Application Security
Test Report

Date

December 7th, 2023

App

com.corellium.cafe

MASVS-AUTH
Authentication and authorization are essential components of most mobile apps, especially those that connect to a
remote service. These mechanisms provide an added layer of security and help prevent unauthorized access to
sensitive user data. Although the enforcement of these mechanisms must be on the remote endpoint, it is equally
important for the app to follow relevant best practices to ensure the secure use of the involved protocols. Mobile apps
often use different forms of authentication, such as biometrics, PIN, or multi-factor authentication code generators, to
validate user identity. These mechanisms must be implemented correctly to ensure their effectiveness in preventing
unauthorized access. Additionally, some apps may rely solely on local app authentication and may not have a remote
endpoint. In such cases, it is critical to ensure that local authentication mechanisms are secure and implemented
following industry best practices. The controls in this category aim to ensure that the app implements authentication
and authorization mechanisms securely, protecting sensitive user information and preventing unauthorized access. It
is important to note that the security of the remote endpoint should also be validated using industry standards such
as the OWASP Application Security Verification Standard (ASVS).

MASVS-CODE
Mobile apps have many data entry points, including the UI, IPC, network, and file system, which might receive data
that has been inadvertently modified by untrusted actors. By treating this data as untrusted input and properly
verifying and sanitizing it before use, developers can prevent classical injection attacks, such as SQL injection, XSS, or
insecure deserialization. However, other common coding vulnerabilities, such as memory corruption flaws, are hard to
detect in penetration testing but easy to prevent with secure architecture and coding practices. Developers should
follow best practices such as the OWASP Software Assurance Maturity Model (SAMM) and NIST.SP.800-218 Secure
Software Development Framework (SSDF) to avoid introducing these flaws in the first place. This category covers
coding vulnerabilities that arise from external sources such as app data entry points, the OS, and third-party software
components. Developers should verify and sanitize all incoming data to prevent injection attacks and bypass of
security checks. They should also enforce app updates and ensure that the app runs up-to-date platforms to protect
users from known vulnerabilities.

MASVS-CRYPTO
Cryptography is essential for mobile apps because mobile devices are highly portable and can be easily lost or stolen.
This means that an attacker who gains physical access to a device can potentially access all the sensitive data stored
on it, including passwords, financial information, and personally identifiable information. Cryptography provides a
means of protecting this sensitive data by encrypting it so that it cannot be easily read or accessed by an
unauthorized user. The purpose of the controls in this category is to ensure that the verified app uses cryptography
according to industry best practices, which are typically defined in external standards such as NIST.SP.800-175B and
NIST.SP.800-57. This category also focuses on the management of cryptographic keys throughout their lifecycle,
including key generation, storage, and protection. Poor key management can compromise even the strongest
cryptography, so it is crucial for developers to follow the recommended best practices to ensure the security of their
users' sensitive data.

MASVS-NETWORK
Secure networking is a critical aspect of mobile app security, particularly for apps that communicate over the network.
In order to ensure the confidentiality and integrity of data in transit, developers typically rely on encryption and
authentication of the remote endpoint, such as through the use of TLS. However, there are numerous ways in which a
developer may accidentally disable the platform secure defaults or bypass them entirely by utilizing low-level APIs or
third-party libraries. This category is designed to ensure that the mobile app sets up secure connections under any
circumstances. Specifically, it focuses on verifying that the app establishes a secure, encrypted channel for network
communication. Additionally, this category covers situations where a developer may choose to trust only specific
Certificate Authorities (CAs), which is commonly referred to as certificate pinning or public key pinning.

Many apps allow users to authenticate via biometrics or a local PIN code. These authentication
mechanisms need to be correctly implemented. Additionally, some apps might not have a remote endpoint,
and rely fully on local app authentication.

Status

Info

Severity

Low

Analysis

Impact

Hardcoded URLs can provide attackers with access to sensitive information including detailed information
regarding the application backend infrastructure which can be leveraged to conduct a more in-depth
targeted attack.

Remediation

An application codebase and required resources should not contain hardcoded URLs. If your application
requires a URL, it should be retrieved from the application backend.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/functions/FunctionsKt$sendPost$1.java

https://www.corellium.com/

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/WebViewActivity.java

https://www.corellium.com/blog

MASVS-AUTH-2

The app performs local authentication securely according to the
platform best practices.

A2

Application Contains Hardcoded URLs
This test evaluates how the application manages hardcoded URLs within its codebase and application
resources. Hardcoded URLs can contain sensitive information regarding backend infrastructure, sensitive
information, access tokens or provide additional insight for attackers to conduct targeted attacks.

Every release of the mobile OS includes security patches and new security features. By supporting older
versions, apps stay vulnerable to well-known threats. This control ensures that the app is running on an up-
to-date platform version so that users have the latest security protections.

Status

Fail

Severity

Low

Analysis

Impact

Running your application on outdated versions of Android can expose users to a wide variety of
vulnerabilities including outdated versions of TLS.

Remediation

Ensure the application's minimum SDK (minSdkVersion) is set to a value of at least 26.

Evidence

File: AndroidManifest.xml

MinSDK: 23

Sometimes critical vulnerabilities are discovered in the app when it is already in production. This control
ensures that there is a mechanism to force the users to update the app before they can continue using it.

Status

Fail

Severity

Low

Analysis

Impact

When exploited an attacker could crash your application through a denial-of-service attack or, in some
cases execute arbitrary code. This is concering for applications that process PNG image files.

Remediation

It is recommended to upgrade the libpng library to version 1.6.32 or later

Evidence

File: libpng.so

Version: 1.5.28

Status

Fail

Severity

Low

Analysis

Impact

Due to multiple vulnerabilities within the libjpeg-turbo library the application is potentially vulnerable to
denial-of-service conditions along with the potential of sensitive information disclosure.

Remediation

It is recommended to upgrade the libjpeg-turbo library to version 2.0.2 or later

Evidence

File: libturbojpeg.so

Version: 2.0.0

Status

Fail

Severity

Low

Analysis

Impact

Utilizing outdated versions of the OkHTTP library can lead to interception of data, various Man-in-the-
Middle attacks along with an overall degraded application security posture.

Remediation

It is recommended to upgrade the OkHTTP library to version 4 or later

Evidence

File: OkHttp_version

Version: 3.1.10

Status

Fail

Severity

Low

Analysis

Impact

Deprecated libraries do not recieve regular updates, patches or bug fixes which can lead to security and
functionality issues. Additionaly, the use of deprecated libraries can cause incompatibility issues for your
application.

Remediation

Migrate from the Joda time library to 'java.time'

Evidence

File: /data/local/tmp/artifacts/output/resources/lib/arm64-v8a/joda-time-2.1.4.jar

MASVS-CODE-1

The app requires an up-to-date platform version.
C1

MinSDK Targets Vulnerable Android Versions
This application is able to be installed on devices running Android 7.1 (API Level 25) or earlier. Applications
with a 'minSdkVersion' lower than 26 will not have crucial security and privacy features applied to improve
the overall security of your application.

MASVS-CODE-2

The app has a mechanism for enforcing app updates.
C2

Insecure libpng Library Version
The current version of libpng used by your application is vulnerable to CVE-2017-12652 which affects
versions before 1.6.32. This vulnerability pertains to an issue in the 'png_set_text_2' function in 'pngset.c'.
A malicious attacker can use this vulnerability to cause a denial-of-service attack due to an out-of-bounds
read.

Insecure libjpeg-turbo Library Version
Versions of the libjpeg-turbo library prior to 2.0.2 contain vulnerabilities related to the processing of JPEG
image files. These issues arise from the way the vulnerable library handles specific encoding scenarios and
process color quantization tables. These vulnerabilities can be exploited using specially crafted JPEG files.

Insecure OkHTTP Library Version
Versions of the OkHTTP library prior to 4.0 may contain vulnerabilities related to the processing and
handling of network communications. This includes missing security enhancements and the use of
deprecated network protocols.

Insecure Joda Library Identified
Joda time library which historically has been popular for handling data and time operations has been
deprecated in favor of 'java.time'. Continued use of deprecated libraries can expose your application to a
variety of security risks.

Cryptography plays an especially important role in securing the user's data - even more so in a mobile
environment, where attackers having physical access to the user's device is a likely scenario. This control
covers general cryptography best practices, which are typically defined in external standards.

Status

Fail

Severity

Low

Analysis

Impact

The use of insecure cryptographic algorithms can lead to unathorized decryption of data and overall a lack
of data integrity. Additionally, such practices risk non-compliance with various industry standards.

Remediation

Replace insecure cryptographic implementations with the secure industry accepted alternatives. For
additional guidance please refer to following android developer guide -
https://developer.android.com/privacy-and-security/cryptography

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/CryptoManager.java

Cipher cipher = Cipher.getInstance('DES');

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/PaymentActivity.java

Cipher desCipher = Cipher.getInstance('DES');

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/PaymentActivity.java

KeyGenerator desKeyGen = KeyGenerator.getInstance('DES');

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/PaymentActivity.java

Cipher rc2Cipher = Cipher.getInstance('RC2');

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/PaymentActivity.java

KeyGenerator rc2KeyGen = KeyGenerator.getInstance('RC2');

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/PaymentActivity.java

MessageDigest md5Digest = MessageDigest.getInstance('MD5');

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/PaymentActivity.java

MessageDigest sha1Digest = MessageDigest.getInstance('SHA-1');

Status

Fail

Severity

Low

Analysis

Impact

Using ECB mode (Electronic Codebook) or 'NoPadding' with symmetric encryption exposes sensitive data
to possible descryption by unathorized parties. The utilization of these insecure modes will not meet
industry compliance standards.

Remediation

It is recommended to switch to a more secure mode of operation for symmetric encryption, such as CBC
(Cipher Block Chaining) and ensure the use of a strong, cryptographically secure pseudo-random
initilization vector (IV). All cryptographic practices should be aligned with current industry standards and
best practices.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/encryption.java

Cipher cipher = Cipher.getInstance('AES/ECB/NoPadding');

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/encryption.java

Cipher cipher = Cipher.getInstance('AES/ECB/NoPadding');

Status

Fail

Severity

Low

Analysis

Impact

The use of a null or predictable IV compromises the encryption scheme's effectiveness This can result in
the exposure of sensitive data and violate data confidentiality.

Remediation

Implement the generation of a unique, cryptographically strong random IV for each encryption operation.
Ensure that the IV is properly generated by a secure random function. This change is necessary to maintain
the integrity and confidentiality of the encryption scheme and meet industry encryption standards.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/null_iv.java

private static final byte[] keyValue = new byte[16]{'T', 'h', 'e', 'B', 'e', 's', 't', 'S', 'e', 'c', 'r', 'e', 't', 'K', 'e',
'y'};

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/null_iv.java

private static final byte[] ivValue = new byte[32] {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

Even the strongest cryptography would be compromised by poor key management. This control covers the
management of cryptographic keys throughout their lifecycle, including key generation, storage and
protection.

Status

Fail

Severity

Medium

Analysis

Impact

Hardcoded encryption keys pose a severe risk to data confidentiality and integrity. If an attacker has
access to the key, they can decrypt retrieve any data stored within the database.

Remediation

Remove all hardcoded encryption keys from the source code and instead utilize a secure method of key
management, such as leveraging platform-specific key stores or using a secure server for key distribution.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/crypto/CryptoManager.java

String pragmaKeyQuery = 'PRAGMA key=SuperSecret_SQLCipher_Key';';

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/database_secrets.java

database.rawExecSQL('PRAGMA key = 'hardcoded_secret_key123'');

Status

Fail

Severity

Low

Analysis

Impact

Hardcoded API keys stored insecurely can pose a significant security risk. If an API key gets extracted, it
can be used to gain unauthorized access to sensitive resources or services associated.

Remediation

Remove all sensitive hardcoded API keys from the application source code. Implement a secure method for
API key management based on industry best practices.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/SecretActivity.java

API_KEY=4534543739243290840328094

MASVS-CRYPTO-1

The app employs current strong cryptography and uses it according to
industry best practices.

C1

Application Utilizing Insecure Cryptography
The application contains references within the code to insecure cryptography implementrations. These
outdated cryptographic algorithms do not need industry compliance standards and can be vulnerable to a
variety of attacks resulting in a breach of application confidentiality and integrity.

Application Utilizing Insecure Symmetric Encryption Modes
The application employs insecure modes of symmetric encryption. These modes do not provide strong
data confidentiality and may be vulnerable to a variety of cryptographic attacks such as pattern analysis
and padding oracle attacks, compromising the confidentiality and integrity of the application's data.

Application Utilizes Null Initialization Vectors
The application's cryptographic implementation utilizes a null or zero Initialization Vector (IV) when
encrypting data. This practice undermines the security provided by the encryption algorithm, as it makes
the encrypted data more susceptible to various cryptographic attacks, particularly when the same key is
used for multiple encryptions.

MASVS-CRYPTO-2

The app performs key management according to industry best
practices.

C2

Application Contains Hardcoded SQLCipher Key
The application's codebase contains hardcoded instances of a 'PRAGMA Key', indicating the encryption
key for a database. Hardcoded keys can be easily extracted from the application bundle, making the
database encryption ineffective.

Application Contains Hardcoded API Keys
The application's code contains hardcoded instances of an API key. Hardcoded keys are susceptible to
extraction, posing a security risk as they can be utlizes maliciously to access sesitive data or perform
unauthorized actions.

Ensuring data privacy and integrity of any data in transit is critical for any app that communicates over the
network. This is typically done by encrypting data and authenticating the remote endpoint, as TLS does.
However, there are many ways for a developer to disable the platform secure defaults, or bypass them
completely by using low-level APIs or third-party libraries. This control ensures that the app is in fact
setting up secure connections in any situation.

Status

Fail

Severity

Low

Analysis

Impact

Insecure network connections can pose a risk to the confidentiality and integrity of data transmitted over
the network. Attackers can potentially intercept and manipulate sensitive information being exchanged
between the application and the remote servers.

Remediation

Implement secure network protocols, enforce the use of HTTPS for communication with remote servers,
and adopt industry best practices for network security configurations.

Evidence

File: /data/local/tmp/artifacts/output/resources/AndroidManifest.xml

android:usesCleartextTraffic=true

File: /data/local/tmp/artifacts/output/resources/res/xml/network_security_config.xml

cleartextTrafficPermitted=true

Status

Pass

Severity

Low

Analysis

Impact

Transmitting the device's IMEI over HTTP in cleartext poses a security risk. Attackers can potentally
intercept and retrieve this sensitive information, compromising the confidentiality and integrity of the data.

Remediation

Implement secure network communication practices by ensuring that sensitive information, such as the
device's IMEI, is transmitted over HTTPS.

Status

Pass

Severity

Low

Analysis

Impact

Transmitting the device's GPS Longitude Coordinates over HTTP in cleartext poses a security risk.
Attackers can potentally intercept and retrieve this sensitive information, compromising the confidentiality
and integrity of the data.

Remediation

Implement secure network communication practices by ensuring that sensitive information, such as the
device's GPS Longitude Coordinates, is transmitted over HTTPS.

Status

Pass

Severity

Low

Analysis

Impact

Transmitting the device's GPS Latitude Coordinates over HTTP in cleartext poses a security risk. Attackers
can potentally intercept and retrieve this sensitive information, compromising the confidentiality and
integrity of the data.

Remediation

Implement secure network communication practices by ensuring that sensitive information, such as the
device's GPS Latitude Coordinates, is transmitted over HTTPS.

Status

Pass

Severity

Medium

Analysis

Impact

Transmitting sensitive data over HTTP in cleartext poses a security risk. Attackers can potentally intercept
and retrieve this sensitive information, compromising the confidentiality and integrity of the data.

Remediation

Implement secure network communication practices by ensuring that sensitive information, such as
sensitive data, is transmitted over HTTPS.

Status

Pass

Severity

Low

Analysis

Impact

Transmitting the device's DNS Address over HTTP in cleartext poses a security risk. Attackers can
potentally intercept and retrieve this sensitive information, compromising the confidentiality and integrity of
the data.

Remediation

Implement secure network communication practices by ensuring that sensitive information, such as the
device's DNS Address, is transmitted over HTTPS.

Status

Pass

Severity

Low

Analysis

Impact

Transmitting the device's Build Fingerprint over HTTP in cleartext poses a security risk. Attackers can
potentally intercept and retrieve this sensitive information, compromising the confidentiality and integrity of
the data.

Remediation

Implement secure network communication practices by ensuring that sensitive information, such as the
device's Build Fingerprint, is transmitted over HTTPS.

MASVS-NETWORK-1

The app secures all network traffic according to the current best
practices.

N1

Application Allows Insecure Network Connections
The application is susceptible to insecure network connections due to misconfigurations within the network
settings. These misconfigurations can lead to the absence of secure network protocols and weak security
configurations.

HTTP Cleartext Transmission of Device IMEI
The application transmits the device's IMEI over HTTP in cleartext, exposing the sensitive value to potential
interception and unauthorized access.

HTTP Cleartext Transmission of GPS Longitude Coordinates
The application transmits the device's GPS Longitude Coordinates over HTTP in cleartext, exposing the
sensitive value to potential interception and unauthorized access.

HTTP Cleartext Transmission of GPS Latitude Coordinates
The application transmits the device's GPS Latitude Coordinates over HTTP in cleartext, exposing the
sensitive value to potential interception and unauthorized access.

HTTP Cleartext Transmission of Sensitive Data
The application transmits sensitive data over HTTP in cleartext, exposing the sensitive value to potential
interception and unauthorized access.

HTTP Cleartext Transmission of DNS Address
The application transmits the device's DNS Address over HTTP in cleartext, exposing the sensitive value to
potential interception and unauthorized access.

HTTP Cleartext Transmission of Build Fingerprint
The application transmits the device's Build Fingerprint over HTTP in cleartext, exposing the sensitive value
to potential interception and unauthorized access.

HTTP Cleartext Transmission of Bluetooth MAC Address
The application transmits the device's Bluetooth MAC Address over HTTP in cleartext, exposing the
sensitive value to potential interception and unauthorized access.

MASVS-PLATFORM
The security of mobile apps heavily depends on their interaction with the mobile platform, which often involves
exposing data or functionality intentionally through the use of platform-provided inter-process communication (IPC)
mechanisms and WebViews to enhance the user experience. However, these mechanisms can also be exploited by
attackers or other installed apps, potentially compromising the app's security. Furthermore, sensitive data, such as
passwords, credit card details, and one-time passwords in notifications, is often displayed in the app's user interface.
It is essential to ensure that this data is not unintentionally leaked through platform mechanisms such as auto-
generated screenshots or accidental disclosure through shoulder surfing or device sharing. This category comprises
controls that ensure the app's interactions with the mobile platform occur securely. These controls cover the secure
use of platform-provided IPC mechanisms, WebView configurations to prevent sensitive data leakage and
functionality exposure, and secure display of sensitive data in the app's user interface. By implementing these
controls, mobile app developers can safeguard sensitive user information and prevent unauthorized access by
attackers.

MASVS-RESILIENCE
Pending

Status

Pass

Severity

Low

Analysis

Impact

Transmitting the device's Bluetooth MAC Address over HTTP in cleartext poses a security risk. Attackers
can potentally intercept and retrieve this sensitive information, compromising the confidentiality and
integrity of the data.

Remediation

Implement secure network communication practices by ensuring that sensitive information, such as the
device's Bluetooth MAC Address, is transmitted over HTTPS.

Status

Pass

Severity

Low

Analysis

Impact

Transmitting the device's Android ID over HTTP in cleartext poses a security risk. Attackers can potentally
intercept and retrieve this sensitive information, compromising the confidentiality and integrity of the data.

Remediation

Implement secure network communication practices by ensuring that sensitive information, such as the
device's Android ID, is transmitted over HTTPS.

Status

Fail

Severity

Low

Analysis

Impact

Opting out of hte Always-On feature in a VPN configuration poses a low risk. It may result in intermittent
lapses of secure VPN connections, potentially exposing sensitive data to unauthorized parties.

Remediation

Reconfigure the application's VPN settings to enable the Always-On feature, ensuring a persistent secure
connection and reducing the likelihood of unintended data exposure.

Evidence

File: /data/local/tmp/artifacts/output/resources/AndroidManifest.xml

android:name='android.net.VpnService.SUPPORTS_ALWAYS_ON' android:value='false' />

Status

Fail

Severity

Low

Analysis

Impact

Setting the target SDK version to less than 29 poses a low risk. The application may lack support for the
latest network configurations, leaving it vulnerable to potential attacks targeting outdated protocols.

Remediation

Update the application's target SDK version to 29 or above to ensure compatibility with the latest secure
network configurations provided by newer Android versions.

Evidence

File: AndroidManifest.xml

TargetSDK: 23

Status

Fail

Severity

Low

Analysis

Impact

An attacker exploiting this vulnerability may gain unauthorized access to sensitive data transmitted by the
application therfore compromising both data confidentiality and integrity.

Remediation

Update the OpenSSL library to a version that addresses the Heartbleed vulnerability. Regularly monitor for
security updates and vulnerabilities in third-party libraries to maintain the security of network
communication.

Evidence

File: libssl.so

OpenSSL 1.0.1b

Status

Fail

Severity

Low

Analysis

Impact

Exploiting the CCS Injection vulnerability may enable an attacker to interfere with the encrypted
communication, potentially gaining unauthorized access to application data. This poses a risk to both data
confidentiality and integrity.

Remediation

Update the OpenSSL library to a version that addresses the Change Cipher Spec Injection vulnerability.
Regularly monitor for security updates and vulnerabilities in third-party libraries to ensure the security of
network communication.

Evidence

File: libssl.so

OpenSSL 1.0.1b

Status

Fail

Severity

Low

Analysis

Impact

Transmitting the device's WiFi IP address over HTTP in cleartext poses a security risl. Attackers can
potentally intercept and retrieve this sensitive information, compromising the confidentiality and integrity of
the data.

Remediation

Implement secure network communication practices by ensuring that sensitive information, such as the
device's WiFi IP address, is transmitted over HTTPS.

Evidence

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.913637 IP 10.11.0.2.45518 > 199.60.103.28.443: Flags [S], seq 251435651, win 32767, length
0

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.913646 IP 199.60.103.28.443 > 10.11.0.2.45518: Flags [S.], seq 287791060, ack 251435652,
win 32767, length 0

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.913648 IP 10.11.0.2.45518 > 199.60.103.28.443: Flags [.], ack 1, win 32767, length 0

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.913650 IP 10.11.0.2.45518 > 199.60.103.28.443: Flags [P.], seq 1:260, ack 1, win 32767,
length 259

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.913651 IP 199.60.103.28.443 > 10.11.0.2.45518: Flags [.], ack 260, win 32767, length 0

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.913706 IP 10.11.0.2.45518 > 199.60.103.28.443: Flags [P.], seq 260:357, ack 1, win 32767,
length 97

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.913708 IP 199.60.103.28.443 > 10.11.0.2.45518: Flags [.], ack 357, win 32767, length 0

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.967699 IP 199.60.103.28.443 > 10.11.0.2.45518: Flags [P.], seq 1:1111, ack 357, win 32767,
length 1110

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.967704 IP 10.11.0.2.45518 > 199.60.103.28.443: Flags [.], ack 1111, win 32767, length 0

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.967707 IP 199.60.103.28.443 > 10.11.0.2.45518: Flags [P.], seq 1111:1128, ack 357, win 32767,
length 17

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.967709 IP 10.11.0.2.45518 > 199.60.103.28.443: Flags [.], ack 1128, win 32767, length 0

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.967869 IP 199.60.103.28.443 > 10.11.0.2.45518: Flags [F.], seq 1128, ack 357, win 32767,
length 0

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.967872 IP 10.11.0.2.45518 > 199.60.103.28.443: Flags [F.], seq 357, ack 1129, win 32767,
length 0

File: /data/local/tmp/artifacts/netmon.pcap

18:14:38.967874 IP 199.60.103.28.443 > 10.11.0.2.45518: Flags [.], ack 358, win 32767, length 0

Status

Pass

Severity

Low

Analysis

Impact

The use of unencrypted HTTP endpoints exposes transmitted data to potential interception and
manipulation. This poses a risk to both the data confidentiality and integrity for any data transmitted
between the application and remote servers.

Remediation

Identify and assess all HTTP endpoitns used by the application. Implement secure network communication
practices by transitioning to HTTPS for sensitive endpoints.

Status

Pass

Severity

Low

Analysis

Impact

Transmitting the device's Serial Number over HTTP in cleartext poses a security risk. Attackers can
potentally intercept and retrieve this sensitive information, compromising the confidentiality and integrity of
the data.

Remediation

Implement secure network communication practices by ensuring that sensitive information, such as the
device's Serial Number, is transmitted over HTTPS.

Status

Pass

Severity

Low

Analysis

Impact

Transmitting the device's WiFi MAC Address over HTTP in cleartext poses a security risk. Attackers can
potentally intercept and retrieve this sensitive information, compromising the confidentiality and integrity of
the data.

Remediation

Implement secure network communication practices by ensuring that sensitive information, such as the
device's WiFi MAC Address, is transmitted over HTTPS.

sensitive value to potential interception and unauthorized access.

HTTP Cleartext Transmission of Device Android ID
The application transmits the device's Android ID over HTTP in cleartext, exposing the sensitive value to
potential interception and unauthorized access.

Application VPN Opts out of Always-On Feature
The application, which utilitzes a VPN, has opted out of the ALways-On feature. This configuration may
expose the application's network traffic to potential interception and compromise the effectiveness of the
VPN.

Application Target SDK Allows for Insecure Network Configuration
The application's target SDK version is set to a value less than 29. This may result in the application not
leveraging the latest secure network configurations available in the newer Android verisons. Allowing your
application to be ran on older versions can potentially result in sensitive data being exposed.

Application Contains Heartbleed Vulnerable OpenSSL Version
The application contains a version of OpenSSL that is known to be vulnerable to the Heartbleed CVE. THe
heartbleed vulnerability could potentially allow an attacker to read sensitive data from the application's
memory.

Application Contains Change Cipher Spec Injection Vulnerable OpenSSL Version
The application contains a version of OpenSSL that is known to be vulnerable to Change Cipher Spec
(CCS) Injection. This vulnerability may allow an attacker to manipulate the Change Cipher Spec protocol,
potentially leading to unauthorized access and manipulation of encrypted communication.

HTTP Cleartext Transmission of Wifi IP Address
The application transmits the device's WiFi IP Address over HTTP in cleartext, exposing the sensitive value
to potential interception and unauthorized access.

Application Contains Insecure HTTP Traffic
The application utilizes HTTP endpoints, potentially exposing sensitive information to interception. The use
of unencrypted HTTP endpoints poses a security risk as transmitted information may be intercepted or
modified by unauthorized parties.

HTTP Cleartext Transmission of Device Serial Number
The application transmits the device's Serial Number over HTTP in cleartext, exposing the sensitive value
to potential interception and unauthorized access.

HTTP Cleartext Transmission of WiFI MAC Address
The application transmits the device's WiFi MAC Address over HTTP in cleartext, exposing the sensitive
value to potential interception and unauthorized access.

Apps typically use platform provided IPC mechanisms to intentionally expose data or functionality. Both
installed apps and the user are able to interact with the app in many different ways. This control ensures
that all interactions involving IPC mechanisms happen securely.

Status

Fail

Severity

Low

Analysis

Impact

An attacker can exploit unverified deep links to redirect users to malicious sites or manipulate the flow of
the application

Remediation

Implement proper verification mechanisms for deep links in the Android Manifest. Utilize secure protocols,
such as HTTPS, to ensure the integrity of deep links. Validate deep links on the server side to prevent
manipulation.

Status

Fail

Severity

Low

Analysis

Impact

Intent redirection vulnerabilities may lead to unauthorized actions, compromise user privacy, or expose
sensitive information.

Remediation

Implement secure intent handling mechanisms to prevent redirection attacks. Ensure that all intents are
properly validated, and use explicit intents where possible. Avoid relying solely on implicit intents, and
validate input parameters to ensure their integrity.

Evidence

File: AndroidManifest.xml

com.corellium.cafe.ui.activities.SecretActivity

File: AndroidManifest.xml

com.corellium.cafe.ui.activities.MainActivity

File: AndroidManifest.xml

.SuperSecretReciever

File: AndroidManifest.xml

.SuperSecretWithPermissions

Status

Fail

Severity

Low

Analysis

Impact

Broadcast receivers without proper permissions may lead to unauthorized access, manipulation, or
disclosure of sensitive data compromising the overall security and integrity of the application.

Remediation

Review and update the AndroidManifest.xml file to ensure that exported broadcast receivers have the
appropriate permissions defined.

Status

Info

Severity

Low

Analysis

Impact

The use of dangerous permissions may grant the application access to sensitive data or device
functioanlities without explicit user consent. This vulnerability could lead to unauthorized actions, data
exposure, or misure of priviledged capabilities.

Remediation

Conduct a thorough review of the application's reuested permissions and only request permissions that are
essential for the application's core features.

Evidence

File: AndroidManifest.xml

android.permission.WRITE_EXTERNAL_STORAGE

WebViews are typically used by apps that have a need for increased control over the UI. This control
ensures that WebViews are configured securely to prevent sensitive data leakage as well as sensitive
functionality exposure (e.g. via JavaScript bridges to native code).

Status

Fail

Severity

Low

Analysis

Impact

Attackers may exploit this vulnerability during runtime to access debug information from the affected
WebViews potentially leading to unauthorized access and expsure of sensitive data.

Remediation

Disable debugging features for WebViews in the application code before releasing the production version.
Ensure that debuggable attributes are set to 'false', especially for webViews handling sensitive data.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/WebViewActivity.java

WebView.setWebContentsDebuggingEnabled(true);

Status

Fail

Severity

Low

Analysis

Impact

The presence of an insecure JavaScript interace in the application code introduces a significant impact.
Exploitation of this vulnerability may lead to unauthorized access and potential manipulation of sensitve
data. Attackers could execute arbitrary code, posing risks to user provacy and application integrity.

Remediation

Review and update the application code to ensure secure usage of 'addJavascriptInterface'. Limit the use
of JavaScript interfaces to only essential functionalities, and avoid exposing sensitive data. Implement
proper input validation and sanitization to prevent malicious code execution.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/WebViewActivity.java

webView.addJavascriptInterface(new WebAppInterface(this), 'AndroidInterface');

Status

Fail

Severity

Low

Analysis

Impact

The utilization of WebViews with JavaScript enabled introduces a potential security risk. Attackers could
exploit this vulnerability to execute malciious scripts. The consequences may include unauthorized actions,
unintended data exposure, and other security threats.

Remediation

Review and assess the necessity of enabling JavaScript in WebViews. If possible, disable JavaScript in
WebViews or implement proper input validation and sanitization to mitigate security risks.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/ui/activities/WebViewActivity.java

((WebView) _$_findCachedViewById(R.id.webviewHome)).getSettings().setJavaScriptEnabled(true);

MASVS-PLATFORM-1

The app uses IPC mechanisms securely.
P1

Application Manifest Contains Unverified Deep Links
The Android manifest contains unverified deep links, which can potentially expose users to phishing
attacks or unintended navigation.

Application Utilizes Intents Vulnerable to Redirection
The application has registered intents that are vulnerable to redirection attacks, allowing potential attackers
to manipulate the intended flow of the application.

Application Utilizes Broadcast Recievers Without Permissions
The application contains broadcast receivers that are exported without proper permissions, potentially
exposing sensitive information and allowing unauthorized parties to interact with the receivers.

Application Utilizes Potentially Dangerous Permissions
The application requests and registers dangerous permissions within the AndroidManifest. Dangerous
permissions without a valid reason may expose users to potential privacy and security risks, as the
application gains access to sensitive data or device features.

MASVS-PLATFORM-2

The app uses WebViews securely.
P2

Application Contains Debuggable WebViews
The application code contains debuggable WebViews within. Debuggable WebViews may allow attackers,
using debugging tools, to access data during runtime, leading to potential disclosure of sensitive data.

Aplication Utilizes Insecure JavaScript Interface
The application code utilizes an insecure JavaScript interface, potentially exposing sensitive data to
unauthorized access. Insecure usage of 'addJavascriptInterface' may allow attackers to execute arbitrary
code.

Application Contains WebViews with Javascript Enabled
The application incorporates WebViews with JavaScript enabled, potentially exposing users to various
security concerns. Enabling JavaScript in WebViews may allow attackers to execute malicious scripts.

Apps run on a user-controlled device, and without proper protections it's relatively easy to run a modified
version locally (e.g. to cheat in a game, or enable premium features without paying), or upload a
backdoored version of it to third-party app stores. This control tries to ensure the integrity of the app's
intended functionality by preventing modifications to the original code and resources.

Status

Fail

Severity

Low

Analysis

Impact

The application can be repleaced with a malicious version without your knowledge. The application could
then be utilized to steal sensitive data or perform any number of additional attacks while pretending to be a
legitimate application.

Remediation

The application should require a minimum SDK of 24 or higher and utilize a signing scheme more recent
than v1. Please note this vulnerability only looks at the minimum SDK and the signing scheme is cheked
seperately.

Evidence

File: AndroidManifest.xml

MinSDK Version - 23

Understanding the internals of an app is typically the first step towards tampering with it (either
dynamically, or statically). This control tries to impede comprehension by making it as difficult as possible
to figure out how an app works using static analysis.

Status

Fail

Severity

Low

Analysis

Impact

An attacker could potentially leverage the presence of the debug library to gain insights into the
application's internal workings, posing an increased security risk.

Remediation

Remove application debug libraries in the production version of the application to minimize the risk of
information exposure and enhance the overall security.

Evidence

File: /data/local/tmp/artifacts/output/sources/com/corellium/cafe/DebugProbesKt.bin

Sometimes pure static analysis is very difficult and time consuming so it typically goes hand in hand with
dynamic analysis. Observing and manipulating an app during runtime makes it much easier to decipher its
behavior. This control aims to make it as difficult as possible to perform dynamic analysis, as well as
prevent dynamic instrumentation which could allow an attacker to modify the code at runtime.

Status

Fail

Severity

Low

Analysis

Impact

Enabling debugging in the manifest may expose sensitive information and pose a security risk, providing
attackers with insights into the application's internal workings.

Remediation

Disable debugging in the AndroidManifest.xml file before releasing the application to enhance security and
protect sensitive information.

Evidence

File: /data/local/tmp/artifacts/output/resources/AndroidManifest.xml

MASVS-RESILIENCE-2

The app implements anti-tampering mechanisms.
R2

Janus Exploitation Possible Due to Current Minimum SDK
The application is potentially vulnerable to the Janus exploit due to a low minimum SDK version. This attack
would allow attacks to inject their own code into the binary package and release it as a legitimate update to
the application.

MASVS-RESILIENCE-3

The app implements anti-static analysis mechanisms.
R3

Application Contains Debug Library
The Android application contains a debug library, which may expose sensitive information ad increase the
overall attack surface.

MASVS-RESILIENCE-4

The app implements anti-dynamic analysis techniques.
R4

Application Enables Debugging within the Android Manifest
The Android application enables debugging within the AndroidManifest, potentially exposing sensitive
information and increasing the attack surface.

MASVS-STORAGE
Mobile applications handle a wide variety of sensitive data, such as personally identifiable information (PII),
cryptographic material, secrets, and API keys, that often need to be stored locally. This sensitive data may be stored
in private locations, such as the app's internal storage, or in public folders that are accessible by the user or other
apps installed on the device. However, sensitive data can also be unintentionally stored or exposed to publicly
accessible locations, typically as a side-effect of using certain APIs or system capabilities such as backups or logs.
This category is designed to help developers ensure that any sensitive data intentionally stored by the app is properly
protected, regardless of the target location. It also covers unintentional leaks that can occur due to improper use of
APIs or system capabilities.

android:debuggable='true'

Applications handle sensitive data coming from many sources including the user, the backend, system
services or other applications on the device and often need to store it locally. The storage locations may be
private to the application (e.g. its internal storage) or be public and therefore accessible by the user or
other installed applications (e.g. public folders such as Downloads). This control ensures that any sensitive
data that is intentionally stored by the application is properly protected independently of the target
location.

Status

Fail

Severity

Low

Analysis

Impact

Storing a DNS Address in a plaintext format within the local data directory presents a significant risk. If
these files are not adequately safeguarded, anyone with device access could retrieve this DNS Address.
This exposure makes the associated information or services more susceptible to unauthorized access and
can provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing information in plaintext, especially if it's not required for the
application's functionality.

Evidence

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

DNS Address: 1.1.1.1

Status

Fail

Severity

Low

Analysis

Impact

Storing a users GPS longitude in plaintext within the local application data directory presents a significant
risk. Anyone with device access could retrieve the associated value if these files are not adequately
safeguarded. This exposure makes the associated information or services more susceptible to
unauthorized access and can provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing sensitive values in plaintext, especially if it's not required for
the application's functionality.

Evidence

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

GPS_LONG (don't disclose location) =-122.0774

Status

Fail

Severity

Low

Analysis

Impact

Storing a users GPS latitude in plaintext within the local application data directory presents a significant
risk. Anyone with device access could retrieve the associated value if these files are not adequately
safeguarded. This exposure makes the associated information or services more susceptible to
unauthorized access and can provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing sensitive values in plaintext, especially if it's not required for
the application's functionality.

Evidence

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

GPS_LAT (don't disclose location)=37.4143

Status

Pass

Severity

Medium

Analysis

Impact

Storing sensitive values in plaintext within the local application data directory presents a significant risk. If
these files are not adequately safeguarded, anyone with device access could retrieve the values. This
exposure makes the associated information or services more susceptible to unauthorized access and can
provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing information in plaintext, especially if it's not required for the
application's functionality.

Status

Fail

Severity

Low

Analysis

Impact

Storing sensitive files within the local application data directory with global write permissions presents a
significant risk. Anyone with device access or any device application could review and modify the contents
of the files.

Remediation

Use the appropriate file permissions to grant access only to specific users or processes that require it,
preventing unauthorized modifications. Utilize content providers if other applications are required to access
data that is stored by your application to avoid additional unauthorized access.

Evidence

File: /data/data/com.corellium.cafe/files/cache.txt

-rwxrwxrwx 1 root root 435 2023-12-04 16

File: /data/data/com.corellium.cafe/files/password.xml

-rwxrwxrwx 1 root root 231 2023-12-04 16

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

-rwxrwxrwx 1 root root 564 2023-12-04 16

File: /data/data/com.corellium.cafe/files/blacklist.txt

-rwxrwxrwx 1 root root 81 2023-12-04 16

Status

Fail

Severity

Low

Analysis

Impact

Storing sensitive files within the local application data directory with global read permissions presents a
significant risk. Anyone with device access or any device application could review the contents of the files.

Remediation

Use the appropriate file permissions to grant access only to specific users or processes that require it,
preventing unauthorized access. Utilize content providers if other applications are required to access data
that is stored by your application to avoid additional unauthorized access.

Evidence

File: /data/data/com.corellium.cafe/files/cache.txt

-rwxrwxrwx 1 root root 435 2023-12-04 16

File: /data/data/com.corellium.cafe/files/password.xml

-rwxrwxrwx 1 root root 231 2023-12-04 16

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

-rwxrwxrwx 1 root root 564 2023-12-04 16

File: /data/data/com.corellium.cafe/files/blacklist.txt

-rwxrwxrwx 1 root root 81 2023-12-04 16

Status

Fail

Severity

Low

Analysis

Impact

Storing the device's Bluetooth MAC address in plaintext within the local application data directory presents
a significant risk. If these files are not adequately safeguarded, anyone with device access could retrieve
the device's Bluetooth MAC address. This exposure makes the associated information or services more
susceptible to unauthorized access and can provide valuable data to adversaries for orchestrating follow-
up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing information in plaintext, especially if it's not required for the
application's functionality.

Evidence

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

Bluetooth MAC: 3E:A3:EC:82:78:5E

Status

Fail

Severity

Low

Analysis

Impact

Storing sensitive API keys in plaintext within the local application data directory presents a significant risk.
Anyone with device access could retrieve the hardcoded API keys if these files are not adequately
safeguarded. This exposure makes the associated information or services more susceptible to
unauthorized access and can provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing information in plaintext, especially if itâ€™s not required for
the applicationâ€™s functionality.

Evidence

File: /data/data/com.corellium.cafe/files/password.xml

<api_key>435435443543343433</api_key>

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

api_key: 37934447933274343783473

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

APIKEY: 56606546593243342039

Status

Fail

Severity

Medium

Analysis

Impact

Storing sensitive password values in plaintext within the local application data directory presents a
significant risk. Anyone with device access could retrieve the password values if these files are not
adequately safeguarded. This exposure makes the associated information or services more susceptible to
unauthorized access and can provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing sensitive values in plaintext, especially if itâ€™s not
required for the applicationâ€™s functionality.

Evidence

File: /data/data/com.corellium.cafe/files/password.xml

<password>adminsecretpassword</password>

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

Password: AsgardSuperSecret

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

Password: supersecretpassword

Status

Fail

Severity

Low

Analysis

Impact

Storing the device's WiFi MAC Address in plaintext within the local application data directory presents a
significant risk. Anyone with device access could retrieve the associated value if these files are not
adequately safeguarded. This exposure makes the associated information or services more susceptible to
unauthorized access and can provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing sensitive values in plaintext, especially if it's not required for
the application's functionality.

Evidence

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

Secret WifI MAC Address (Top Secret) - 7c:c5:37:a4:ba:b9

Status

Fail

Severity

Low

Analysis

Impact

Storing the device's WiFi IP Address in plaintext within the local application data directory presents a
significant risk. Anyone with device access could retrieve the associated value if these files are not
adequately safeguarded. This exposure makes the associated information or services more susceptible to
unauthorized access and can provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing sensitive values in plaintext, especially if it's not required for
the application's functionality.

Evidence

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

WIFI_IP=10.11.0.2

Status

Fail

Severity

Low

Analysis

Impact

Storing the device's IMEI value in plaintext within the local application data directory presents a significant
risk. Anyone with device access could retrieve the associated value if these files are not adequately
safeguarded. This exposure makes the associated information or services more susceptible to
unauthorized access and can provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing sensitive values in plaintext, especially if it's not required for
the application's functionality.

Evidence

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

IMEI=867400022047199

Status

Pass

Severity

Low

Analysis

Impact

Storing the device's serial number in plaintext within the local application data directory presents a
significant risk. Anyone with device access could retrieve the associated value if these files are not
adequately safeguarded. This exposure makes the associated information or services more susceptible to
unauthorized access and can provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing sensitive values in plaintext, especially if it's not required for
the application's functionality.

Status

Fail

Severity

Low

Analysis

Impact

Storing the Android ID in plaintext within the local application data directory presents a significant risk.
Anyone with device access could retrieve the associated value if these files are not adequately
safeguarded. This exposure makes the associated information or services more susceptible to
unauthorized access and can provide valuable data to adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt sensitive values using industry-accepted algorithms before storing them in the
application's local data directory. Avoid storing sensitive values in plaintext, especially if it's not required for
the application's functionality.

Evidence

File: /data/data/com.corellium.cafe/files/Asgard_Properties.txt

Android ID: 2bbcdf84a6c867c7 - Don't leak this ID, this is a private device

There are cases when sensitive data is unintentionally stored or exposed to publicly accessible locations;
typically as a side-effect of using certain APIs, system capabilities such as backups or logs. This control
covers this kind of unintentional leaks where the developer actually has a way to prevent it.

Status

Fail

Severity

Low

Analysis

Impact

Storing a device's WiFi IP Address within the Android device logs in plaintext presents a significant risk.
Anyone with device access could retrieve the logs, and this exposure can provide valuable data to
adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only required data is being written
to the device logs.

Evidence

File: /data/local/tmp/artifacts/application_logs.txt

WIFI_IP=10.11.0.2

Status

Fail

Severity

Low

Analysis

Impact

Storing a Bluetooth MAC Address within the Android device logs in plaintext presents a significant risk.
Anyone with device access could retrieve the logs, and this exposure can provide valuable data to
adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only required data is being written
to the device logs.

Evidence

File: /data/local/tmp/artifacts/application_logs.txt

Bluetooth MAC: 3E:A3:EC:82:78:5E

Status

Fail

Severity

Low

Analysis

Impact

Storing a device's IMEI within the Android device logs in plaintext presents a significant risk. Anyone with
device access could retrieve the logs, and this exposure can provide valuable data to adversaries for
orchestrating follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only required data is being written
to the device logs.

Evidence

File: /data/local/tmp/artifacts/application_logs.txt

IMEI=867400022047199

Status

Fail

Severity

Low

Analysis

Impact

Enabling 'allowBackup' poses a business risk, as it permits extraction of sensitive application data,
undermining mobile security controls and data confidentiality.

Remediation

Set the 'allowBackup' flag to 'false' within the AndroidManifest. If a backup is necessary for the application,
it is possible to define backup conditions including utiliing encryption.

Evidence

File: AndroidManifest.xml

android:allowBackup='true'

MASVS-STORAGE-1

The application securely stores sensitive data.
S1

Local Data Exposure: DNS Address Stored Insecurely
This test evaluates how the application handles DNS addresses within its local data directory. Best
practices dictate that sensitive details should be protected adequately, utilizing encryption or obfuscation
techniques. The specific focus of this test is to determine whether the application has stored a DNS
address in plaintext, making it easily readable and accessible without any additional processing.

Local Data Exposure: GPS Longitude Stored Insecurely
This test evaluates how the application handles user GPS data, specifically longitude coordinates within the
local data directory. Best practices dictate that sensitive information should be protected adequately,
utilizing encryption, obfuscation and platform-specific secure storage solutions. The specific focus of this
test is to determine whether the application has stored a users GPS longitude in plaintext, making it easily
readable and accessible without any additional processing.

Local Data Exposure: GPS Latitude Stored Insecurely
This test evaluates how the application handles user GPS data, specifically latitude coordinates within the
local data directory. Best practices dictate that sensitive information should be protected adequately,
utilizing encryption, obfuscation and platform-specific secure storage solutions. The specific focus of this
test is to determine whether the application has stored a users GPS latitude in plaintext, making it easily
readable and accessible without any additional processing.

Local Data Exposure: Sensitive Values Stored Insecurely on Device
This test evaluates how the application handles the storage of the provided sensitive values within the local
data directory. Best practices dictate that sensitive values should be protected adequately, utilizing
encryption or obfuscation techniques. The specific focus of this test is to determine whether the
application has stored any of the provided sensitive values in plaintext, making it easily readable and
accessible without any additional processing.

Local Data Exposure: Global Write Permissions
This test evaluates how the application utilizes global write permissions for potentially sensitive files within
the local data directory. Best practices dictate that application files containing sensitive information should
be protected adequately, utilizing encryption, obfuscation and sufficient file permissions. The specific
focus of this test is to determine whether the application has stored sensitive files with global write
permissions, making the files easily accessible outside the local data directory.

Local Data Exposure: Global Read Permissions
This test evaluates how the application utilizes global read permissions for potentially sensitive files within
the local data directory. Best practices dictate that application files containing sensitive information should
be protected adequately, utilizing encryption, obfuscation and sufficient file permissions. The specific
focus of this test is to determine whether the application has stored sensitive files with global read
permissions, making the files easily readable outside the local data directory.

Local Data Exposure: Bluetooth MAC Address Stored Insecurely
This test evaluates how the application handles the device's Bluetooth MAC address within the local data
directory. Best practices dictate that sensitive values should be protected adequately, utilizing encryption
or obfuscation techniques. The specific focus of this test is to determine whether the application has
stored the device's Bluetooth MAC address in plaintext, making it easily readable and accessible without
any additional processing.

Local Data Exposure: Insecure Hardcoded API Keys
This test evaluates how the application handles API keys within the local data directory. Best practices
dictate that sensitive API keys should be protected adequately, utilizing encryption, obfuscation and
platform-specific secure storage solutions. The specific focus of this test is to determine whether the
application has stored sensitive API keys in plaintext, making it easily readable and accessible without any
additional processing.

Local Data Exposure: Insecure Hardcoded Passwords
This test evaluates how the application handles hardcoded passwords within the local data directory. Best
practices dictate that sensitive values, including passwords, should be protected adequately, utilizing
encryption, obfuscation and platform-specific secure storage solutions. The specific focus of this test is to
determine whether the application has stored any password values hardcoded in plaintext, making them
easily readable and accessible without any additional processing.

Local Data Exposure: WiFi MAC Address Stored Insecurely
This test evaluates how the application handles the device's WiFi MAC Address within the local data
directory. Best practices dictate that sensitive information should be protected adequately, utilizing
encryption, obfuscation and platform-specific secure storage solutions. The specific focus of this test is to
determine whether the application has stored the device's WiFi MAC Address in plaintext, making it easily
readable and accessible without any additional processing.

Local Data Exposure: WiFi IP Address Stored Insecurely
This test evaluates how the application handles the device's WiFi IP Address within the local data directory.
Best practices dictate that sensitive information should be protected adequately, utilizing encryption,
obfuscation and platform-specific secure storage solutions. The specific focus of this test is to determine
whether the application has stored the device's WiFi IP Address in plaintext, making it easily readable and
accessible without any additional processing.

Local Data Exposure: Device IMEI Stored Insecurely
This test evaluates how the application handles the device's IMEI value within the local data directory. Best
practices dictate that sensitive information should be protected adequately, utilizing encryption,
obfuscation and platform-specific secure storage solutions. The specific focus of this test is to determine
whether the application has stored the device's IMEI value in plaintext, making it easily readable and
accessible without any additional processing.

Local Data Exposure: Device Serial Number Stored Insecurely
This test evaluates how the application handles the device's serial number within the local data directory.
Best practices dictate that sensitive information should be protected adequately, utilizing encryption,
obfuscation and platform-specific secure storage solutions. The specific focus of this test is to determine
whether the application has stored the device's serial number in plaintext, making it easily readable and
accessible without any additional processing.

Local Data Exposure: Android ID Stored Insecurely
This test evaluates how the application handles the Android ID within the local data directory. Best
practices dictate that sensitive information should be protected adequately, utilizing encryption,
obfuscation and platform-specific secure storage solutions. The specific focus of this test is to determine
whether the application has stored the Android ID in plaintext, making it easily readable and accessible
without any additional processing.

MASVS-STORAGE-2

The app prevents leakage of sensitive data.
S2

Local Data Exposure: WiFi IP Address Logged Insecurely
This test evaluates how the application handles sensitive data within the Android device logs. Best
practices dictate that sensitive information should not be contained within the device logs, additionally, if
data is required to be used within the logs the data should be protected adequately, utilizing encryption.
The specific focus of this test is to determine whether the application has stored the device's WiFi IP
Address within logs in plaintext, making it easily readable and accessible without any additional processing.

Local Data Exposure: Bluetooth MAC Address Logged Insecurely
This test evaluates how the application handles sensitive data within the Android device logs. Best
practices dictate that sensitive information should not be contained within the device logs, additionally, if
data is required to be used within the logs the data should be protected adequately, utilizing encryption.
The specific focus of this test is to determine whether the application has stored a Bluetooth MAC Address
within the logs in plaintext, making it easily readable and accessible without any additional processing.

Local Data Exposure: Device IMEI Logged Insecurely
This test evaluates how the application handles sensitive data within the Android device logs. Best
practices dictate that sensitive information should not be contained within the device logs, additionally, if
data is required to be used within the logs the data should be protected adequately, utilizing encryption.
The specific focus of this test is to determine whether the application has stored the device's IMEI within
logs in plaintext, making it easily readable and accessible without any additional processing.

Local Data Exposure: Application Backups Enabled
This test evaluates if the 'allowbackup' flag is set to 'true' within the AndroidManifest. The 'AllowBackup'
flag can be used backup the entire application data directory exposing the contents within to anyone with
access.

Local Data Exposure: Device Serial Logged Insecurely
This test evaluates how the application handles sensitive data within the Android device logs. Best
practices dictate that sensitive information should not be contained within the device logs, additionally, if
data is required to be used within the logs the data should be protected adequately, utilizing encryption.

Status

Pass

Severity

Low

Analysis

Impact

Storing a device's serial number within the Android device logs in plaintext presents a significant risk.
Anyone with device access could retrieve the logs, and this exposure can provide valuable data to
adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only required data is being written
to the device logs.

Status

Pass

Severity

Low

Analysis

Impact

Storing a device's build fingerprint within the Android device logs in plaintext presents a significant risk.
Anyone with device access could retrieve the logs, and this exposure can provide valuable data to
adversaries for orchestrating follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only required data is being written
to the device logs.

Status

Fail

Severity

Low

Analysis

Impact

Storing a WiFi MAC Address within the Android device logs in plaintext presents a significant risk. Anyone
with device access could retrieve the logs, and this exposure can provide valuable data to adversaries for
orchestrating follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only required data is being written
to the device logs.

Evidence

File: /data/local/tmp/artifacts/application_logs.txt

Secret WifI MAC Address (Top Secret) - 7c:c5:37:a4:ba:b9

Status

Fail

Severity

Low

Analysis

Impact

Storing GPS Coordinates within the Android device logs in plaintext presents a significant risk. Anyone with
device access could retrieve the logs, and this exposure can provide valuable data to adversaries for
orchestrating follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only required data is being written
to the device logs.

Evidence

File: /data/local/tmp/artifacts/application_logs.txt

GPS_LONG (don't disclose location) =-122.0774

Status

Fail

Severity

Low

Analysis

Impact

Storing GPS Coordinates within the Android device logs in plaintext presents a significant risk. Anyone with
device access could retrieve the logs, and this exposure can provide valuable data to adversaries for
orchestrating follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only required data is being written
to the device logs.

Evidence

File: /data/local/tmp/artifacts/application_logs.txt

GPS_LAT (don't disclose location)=37.4143

Status

Pass

Severity

Medium

Analysis

Impact

Storing sensitive data within the Android device logs in plaintext presents a significant risk. Anyone with
device access could retrieve the logs, and this exposure can provide valuable data to adversaries for
orchestrating follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only required data is being written
to the device logs.

Status

Fail

Severity

Low

Analysis

Impact

Storing a DNS address within the Android device logs in plaintext presents a significant risk. Anyone with
device access could retrieve the logs, and this exposure can provide valuable data to adversaries for
orchestrating follow-up attacks.

Remediation

Always encrypt log data using industry-accepted algorithms and ensure only required data is being written
to the device logs.

Evidence

File: /data/local/tmp/artifacts/application_logs.txt

DNS Address: 1.1.1.1

The specific focus of this test is to determine whether the application has stored the device's serial number
within logs in plaintext, making it easily readable and accessible without any additional processing.

Local Data Exposure: Device Fingerprint Logged Insecurely
This test evaluates how the application handles sensitive data within the Android device logs. Best
practices dictate that sensitive information should not be contained within the device logs, additionally, if
data is required to be used within the logs the data should be protected adequately, utilizing encryption.
The specific focus of this test is to determine whether the application has stored the device's build
fingerprint within logs in plaintext, making it easily readable and accessible without any additional
processing.

Local Data Exposure: WiFI MAC Address Logged Insecurely
This test evaluates how the application handles sensitive data within the Android device logs. Best
practices dictate that sensitive information should not be contained within the device logs, additionally, if
data is required to be used within the logs the data should be protected adequately, utilizing encryption.
The specific focus of this test is to determine whether the application has stored the WiFi MAC Address
within logs in plaintext, making it easily readable and accessible without any additional processing.

Local Data Exposure: GPS Longitude Logged Insecurely
This test evaluates how the application handles sensitive data within the Android device logs. Best
practices dictate that sensitive information should not be contained within the device logs, additionally, if
data is required to be used within the logs the data should be protected adequately, utilizing encryption.
The specific focus of this test is to determine whether the application has stored GPS Coordinates within
the logs in plaintext, making it easily readable and accessible without any additional processing.

Local Data Exposure: GPS Latitude Logged Insecurely
This test evaluates how the application handles sensitive data within the Android device logs. Best
practices dictate that sensitive information should not be contained within the device logs, additionally, if
data is required to be used within the logs the data should be protected adequately, utilizing encryption.
The specific focus of this test is to determine whether the application has stored GPS Coordinates within
the logs in plaintext, making it easily readable and accessible without any additional processing.

Local Data Exposure: Sensitve Data Logged Insecurely
This test evaluates how the application handles sensitive data within the Android device logs. Best
practices dictate that sensitive information should not be contained within the device logs, additionally, if
data is required to be used within the logs the data should be protected adequately, utilizing encryption.
The specific focus of this test is to determine whether the application has stored any sensitive data
provided within the logs in plaintext, making it easily readable and accessible without any additional
processing.

Local Data Exposure: DNS Address Logged Insecurely
This test evaluates how the application handles sensitive data within the Android device logs. Best
practices dictate that sensitive information should not be contained within the device logs, additionally, if
data is required to be used within the logs the data should be protected adequately, utilizing encryption.
The specific focus of this test is to determine whether the application has stored a DNS address within the
logs in plaintext, making it easily readable and accessible without any additional processing.

