
Corellium

Video Webinar

Episode 2: Mobile Vulnerabilities Exposed: Data at Rest

Full Transcript
(00:05)
Brian Robison: Good morning, everybody. Good afternoon, good evening, depending on where
you're coming from. Thank you so much for joining today's webinar. My name is Brian Robison.
I'm Chief Evangelist here at Corellium, and I am honored and humbled to be joined by one of
our security experts, Steven Smiley, who's going to be doing actually the bulk of the
presentation today and pretty similar to our first webinar in the series. The bulk of it is actually
going to be live demos and live discussion around today's topic—which is data at rest
vulnerabilities in iOS and Android applications. So, welcome Steven. How are you doing today?

Steven Smiley: Thanks, Brian. I'm excited.

Brian Robison: Awesome, excellent. So let's go ahead and get started into today's session.
And as I said, this is episode number two essentially in a new series that we call the Change
What's Possible webinar series. And again, we're going to be focused on data at rest in iOS and
Android applications today and some of the vulnerabilities that are associated with that.

(01:17):
Part 2 of this is coming next month and then Part 3 of it will be in December. So please stay
tuned for those things. And just as a quick recap from last week's or last month's webinar, I want
to talk about mobile app pen testing and why is it so difficult to do? Why does it cost so much to
actually do it? And it's really because of—and I'll just talk through them again really, really
quick—those three major limitations that impact us on mobile devices. On x86 platforms, it's
really easy for us to get these things. We have VMware to virtualize them. We have operating
systems from Microsoft and Linux and MacOS, and we can just run these things easily. But on
the mobile device side, it's a lot different. There are limitations to getting specific devices or
specific types of devices and then the operating systems and what level of access do you have
inside those operating systems?

(02:14):
Are they jailbroken? Do you have access to the level of an operating system that you need? So
these two are really tied together because the reason you're out there dumpster diving for older

https://www.corellium.com/data-at-rest-webinar

devices is because they potentially have an older operating system on them, which might have
a public jailbreak that is available to you. And then the third thing is the time. And last month we
talked about the old way we used to do threat and malware research. For example, we would
walk around to systems, physical boxes, and re-image them from hard discs. And it just took
forever because every time you would mess up a box, you'd have to re-image it back to scratch
again, and that could take an hour or so. And so with physical devices in mobile we're presented
with essentially the same thing. And what really changed that world was the invention of
virtualization where we could take a snapshot of that device and restore it within seconds back
to a pristine known good state.

(03:20):
And essentially, that's what Corellium is bringing to the mobile security space as well. We treat
these devices as virtual machines, just like VMware where you can create machines that are
completely virtual. You can configure them, you can clone them, you can split them up, you can
snapshot them and you can move them back and forth all at freewill. Those are essentially
where you save the time with a virtualization solution. Just like what Corellium is building, it's not
simulation; it's not emulation. Those tools like that aren't allowed on those platforms until you go
to total virtualization. So again, that's just a real quick overview of what we do. And so I'm going
to go ahead and have the honor to turn the rest of the conversation over to Steven at this time.
Steven, I'm going to go ahead and stop my share so that you are able to. Let's verify that you
can do that.

(04:20):
Steven Smiley: Thanks, Brian. I can go ahead and try there.

Brian Robison: Yeah, go ahead and take the share. Awesome, you've got it. And I am going to
go ahead and shut up and let you go ahead and take the conversation. So folks, we do want
this to be an interactive session, so if you do have questions, I will be monitoring the Q&A tab.
Feel free to ask. If I can address them, I will. If not, then we'll have some time towards the end
reserved for Steven. So with that, Steven, I'll let you go ahead and take it over. Thank you, sir.

Steven Smiley: Thanks, Brian. So like Brian said, we're going to talk about data storage, data
at rest, how there's potential vulnerabilities with that data, how we can access that data with
Corellium and third party tools, integrations that we have, and that sort of stuff. So we're going
to start with iOS here. Primarily insecure data storage is all about how your application data is
being stored and protected within your device. Every application, whether it be a marketing app,
whether it be a financial app, is taking some sort of data from you and storing it. Now that could
be non-sensitive data—where it could just be an email address, maybe your location, something
very simple—to something as complicated as your credit card, your address, your date of birth,
or your personal information as well. So in iOS, some of the common places you're going to find
that data, your Keychain for one NSUserDefaults, application databases stored locally.

(05:57)

And then PLIST files are property files. So we're going to go over each of those sections
individually, talk about them, and then just go over a quick demo of how you can kind of do that
with Corellium or third party tools. For this one, for iOS specifically, we are going to be using the
DVIA-v2 application. It's freely available on GitHub if you want to go install it on your own time
and take a look at some of the challenges as well. You're more than capable of doing that. This
is really just a vulnerable application that highlights not only local storage but a bunch of other
vulnerabilities. So there's a really good opportunity to go through that if you do get the
opportunity or the time to do that.

(06:39)
So first, we're going to talk about the iOS Keychain storage. So is the Keychain secure? You'll
see in a lot of documentation and a lot of stuff online, they'll tell you to store your sensitive data
within the Keychain, whether that be your personal information, credit card, authentication
tokens, a handful of data—but just storing in the Keychain is not enough. You can configure that
data protection for the Keychain items by setting this kSecAttrAccessible key. So I actually can
show you here just briefly. This is on the OAS GitHub page. You guys can actually look this up
as well. But there are a ton of attributes that you can apply to any Keychain item that tells the
device how accessible that data is. If you need biometrics first for accessing that data, if it's
when your device is unlocked (if it is [unlocked] at all times), if it's when your device is unlocked
the first time after a reset, things like that. So there's a bunch of attributes, and depending on
how that data is entered in the Keychain and which attribute is assigned to it, that data could be
accessible to anybody who has access to the device.

(07:53)
One of the number one answers is just encrypt that data within the Keychain and then even if
it's accessible to people who have the device, depending on the level of encryption, that can be
quite difficult to access. So that brings us to a good question: how can someone access that
data? Now, if you have physical access to the device, you can use things like iOS Keychain
Dumper, which is the tool—it is freely available on GitHub—that you install on your iOS device,
and you actually run that to dump the Keychain. One that I like and one that we're going to kind
of demo out today is using an objection security framework to be able to pull those entries as
well for your application. So what is Objection? That is a runtime exploration. It's a runtime
mobile toolkit powered by Frida. So if you've done some mobile work already, you're probably
familiar with Frida or even Objection, but it allows you to inspect and interact with container files
and systems bypass security controls.

(08:52)
There's built-in commands to do that. Things like jailbreak detection, certificate pinning—just
some various different controls. You can easily run some scripts to bypass those. And then
dump the Keychain, which we're going to focus on today. There are some other options we're
going to go through as we get into some of the next slides about some of the additional options
beyond dumping the Keychain. But for this part we'll just focus on the Keychain. So how is that
performed? Well, if you're using the Corellium Cloud, you would just connect to the VPN and

then you would ensure USBFlux is running so that you have that basically physical connection.
It's as if your device is plugged directly into your machine and then you would hook the
application with Objection, which I just have a command there, which we'll kind of go over in the
demo.

(09:43)
But once you hook into the application, then we can kind of run from there. So we'll focus on a
demo now. So on that Keychain, I actually have my iOS phone running here on Corellium. It's a
15.5 device, iPhone 7. I have the DVIA application running. I'm actually just going to connect to
the VPN as I've mentioned there. That'll take two seconds. Once we're connected, we can start
USBFlux here, and you'll see the devices are running one remote and then you could do things
like this. So this is actually just a Frida command, which is checking the processes of the USB
device. So it is seeing the USB device and all the applications that are installed and which ones
are running. So you can see that I do have the DVIA application, it is running, I can grab the
package name here and then I could run something like Objection, which this is the command
that you saw in the slide. -g is for gadget, you would put in the package name, which can either
be gathered through Frida, that command that I just ran, or you can see that within the
Corellium interface as well.

(11:02)
So if you go to apps, you can actually see it right here. So once you do that, what'll happen is
that the application will run on this phone and then it will hook into it here. So now I have a
connection. I'm hooked into that application. So what I'm going to do is actually go over to this
device, and I'm going to go to the local storage challenges. And like I mentioned, there's a ton of
challenges here. So I definitely recommend installing the application if you get a chance to go
through some of these. But for this one we're going to focus on the local data storage. We have
your Keychain here. We can put anything in here and save it to the Keychain just as an
example.

(11:47)
And then we just go over here and we'll do something like an iOS Keychain dump, and you will
see that the Corellium_Secret is saved here in plain text and it is when the device is unlocked.
So anytime the device is unlocked, if you run this, you'll be able to get access to that data and
pull that down very easily. Now in this application, obviously I clicked a button to enter that
Keychain entry in any other application. You're not sure when that's actually happening. Maybe
you're saving your data locally, maybe a saved credit card, maybe a saved email address, or
phone number. Really you don't know what data is being stored in there. So it's really a good
opportunity not only if you're doing a pen test or some sort of AppSec assessment, but to look at
the Keychain entries for all applications just to know what's being stored, how it's being stored,
is it encrypted, is it not? Things like that. There was a question. Do we need to zoom in on
something?

(12:55)

Brian Robison:
Yeah, there's a question. The text and things are a little small on the screen, but on your viewing
side, as you're viewing what Steven is showing, under view options, you can pull down to view
zoomed in modes, things like that. In the future, we'll try to broadcast it a little bit lower
resolution on our screen so that we can see things bigger. But right now go ahead and just use
the zooming within the Zoom webinar itself.

(13:26)
Steven Smiley:
Okay, perfect. Yeah, I can try to zoom in on something too if we need. That's no problem. So
iOS NSUserDefaults, it's kind of a confusing name. What is that? So the iOS—it's basically an
iOS system that allows an application to customize its behavior to match a user preference.
Now that sounds like a generic sentence. That could mean anything, but really what it means is
anything from themes, units of measurements, application preferences. For example, you have
an application that has a light mode, dark mode—what does a user kind of prefer when they log
in? Unit of measurement could be things like kilometers, miles, US dollars, Canadian dollars,
something like that. So there are those differences. Application preferences could just be that a
user wants to see a different screen when they log in. Maybe they want to see their news alerts,
maybe they want to see their profile, different options within the application.

(14:24)
So really, what the main goal of NSUserDefaults is, is to give a user a customizable plan for
your application. The ability to be able to see the application the way you want it, not just a
generic application. Now when insecurely sensitive data could be stored in these—and I've seen
this quite often—people think this is kind of a hidden feature, that they can store sensitive data
in there while they can use it to store data. Obviously it's the same practice as your Keychain.
You do want to encrypt that data because it is easily accessible to users. Now how can they do
that one objection? Again, we could just run a simple command to kind of pull that data or
there's actually sometimes a preference file in the local data directory. We can kind of pull those
defaults as well and look at them with a text viewer. So a couple different options there. So we'll
just look at a quick demo on that one. So if we go to the user defaults here within this
application, we can type any text in here, Corellium_Secret or something like that, and we can
save it in there. So what I'm actually going to do, I actually still have Objection running, so I can
just use NSUserDefaults. So you can run this command, and this is kind of small, so let me see
if I can—oh, there we go. I can make that a little bigger.

(16:00)
Okay, so what we can do is we can do iOS NSUserDefaults, and what that'll do is that we'll
actually just get the defaults for this application. So you can see that the Corellium_Secret is
there. That might be hard to read, but it is there. You can see things like language as well,
location—there's all sorts of stuff that it's actually used for regular purposes for an application,
but obviously in an insecure method, something like that. Like a Corellium_Secret could be

stored in there. That could be username, password, anything like that. And that data becomes
at risk.

(16:44)
So iOS application databases, that's really kind of the next option for storing your data. Now
they're usually stored within the local data directory on your device, which is only accessible via
the application unless your device is jailbroken. So a lot of times you'll see in the public, people
believe that information stored in your local data directory for iOS is safe. It's fairly protected,
only the application has access. There's all this talk about applications being sandboxed and
only being able to access their data. And while that's true—your application can only access
your data and other applications can't access that data directory—what happens when you have
a jailbroken device and you can access everything? And Corellium, for one, allows root access.
We can jailbreak any version all the way up to 16, and anytime there's a new version, we have
the Jailbroken devices ready to go for users. So if you're working with Corellium especially,
you're going to have access no matter what the device is to be able to access that data. But in
the public, anybody who is on a breakable version, that data is potentially at risk.

(18:01)
So there are multiple database options, SQLite, Realm, CoreData for iOS realm data. That's
kind of a newer database as you'll see more and more through Android and iOS. And we'll talk
about it on Android as well. SQLite has been around forever and that's probably your most
common unless they're moving over to the Realm. Now obviously, data stored within plain text is
vulnerable to anyone with access to your device. And like I said, with geo-breakable versions or
with Corellium, that data is still at risk and isn't as protected as people like to think. So how is
this performed? Well, one: identify the path to the application data directory, which can be a little
complicated on iOS. So we'll kind of talk about that. You can search the local data directory for
database content. Could be multiple databases, could be in different folders, so you want to
search for that. There's some kind of manual intervention there to kind of go through and find
some of that data. And then again, just review the databases you do find for that potentially
sensitive information.

(19:17)
Okay, so iOS application databases. Where is that data directory that we kind of talked about?
So on iOS, it's in VAR/mobile/containers/data/application, and then there's an <ID>. Now how
do you get that <ID>? They're unique for every application. There's really two options to get that
one. I mean there's a third technically: clicking through and seeing which ones are there. But
that's kind of boring. There's a lot of data there, and it can kind of be complicated, but there's
two main easier options. One, the Corellium file tab, which I can actually show you here if you're
in Corellium. If you go to the files tab, they have this last modified column. And if, when your
application was installed, maybe it was the last application you installed, you can use that last
modified version when you get to this directory. When you get to the VAR mobile containers
directory to the end, you could sort by date modified, find the application that you last installed

or based on the date and likely that is to be the folder of your application and look through and
make sure it is the other option.

(20:27)
The foolproof option is to use Objection and run this ENV command. So it just stands for
environment. It will actually show you the entire environment for that application, your bundle
path, your cache directory, your document directory, and your library directory. So what you'll
see from the cash documents in the library, they all have the same path and there's the <ID>, so
the 057…I'm not going to say that whole thing, but that is the directory for this. So now we can
take that either into Corellium, or if we're going to SH, the device to be able to actually go into
that directory and pull that data.

(21:09)
And again, here's just the command if you want to hook an application. So it is relatively easy.
So what we'll do here is we'll kind of take a look. So you can go to Core Data here, which is
going to save a database, a local…I just want to make sure that everything is working there. So
you can enter data here and save it and then you will find it…let me go to my files tab
VAR/mobile/containers/data/application. And it is this one. So this is your data directory for this
application. And on Corellium, you can copy this file path as well. So if you want to pull down
multiple files, you want to use some SSH tool or whatever you want to use, you can just copy
this file path and then pull down any data you want or you can just click on different files and you
can download this stuff directly.

(22:13)
So within here we've got a bunch of directories. You'll see your library directory, you'll see a
bunch of information, tons of data in here, HTTP, there's application support, which is kind of the
one we're going to look at in a second. But you'll see there is a ton of data here. And if you go
back, there's also documents which have some other information as well. So in this case, I've
already actually downloaded this file just to kind of save some time, but once you enter this data
here, it gets saved in this SQL database unencrypted. So if you actually launch this database,
you'll be able to browse the data. And that is hard to see. I don't know if you'll actually be able to
see that.

(22:56)
Brian Robison:
You might try command plus, plus, plus to see if you can make that text bigger.

(23:01)
Steven Smiley:
That's actually, that doesn't zoom in, but what you'll see here is just the data in plain text. So
there's your email address, your name, your password, and your phone number, the same data,
which is actually stored here, name, email, phone, and password. And that's stored in an
unencrypted database. So what we really wanted to show here was just the ability to quickly

download this. So if you click these files, you can just download the database right away and
just really quickly, you can select multiple files if you want to. You can go into your folders to
quickly review all the data, and as we mentioned, there could be databases stored in multiple
locations. So Corellium will give you the ability to kind of go through and click this very quickly.
So we have the application support. Obviously if you go into documents, there's another Realm
database there as well, and there are some other folders that have some additional data. So
just the ability to kind of click through all the data, find what you need, and then from that data,
just download it, review the data, and figure out where the vulnerabilities are, if there are any.

(24:13)
So PLIST files. Last common storage place for iOS is a PLIST file, which is a property file. It's
really just a settings file for iOS that typically contains critical information regarding the
application configuration. So most commonly, if you've ever unzipped or decompiled an IPA or
an actual iOS application, you would see the info PLIST. That's probably the most common. It
has to be there for every iOS application. And data contained within there obviously is if you
want your iPhone version, iOS or iPad, depending on which device you kind of want it installed
on, what the minimum versions are, landscape, portrait, network settings, potentially API keys,
permissions, custom URL schemes, things like that. So there's a whole lot of data stored there.
And then obviously within that same directory, sometimes applications do store other PLIST files
that could be sensitive in nature where they have SDK implementations and they have API keys
or credentials and things like that.

(25:23)
So it's always good to look at those, but that's just one location to look for PLIST files. They are
also stored within the data directory. Now this doesn't always happen, but there are applications
that believe PLIST files because their Apple files are not as easily readable, and that's really not
true. They're just an XML file. You can actually open it with a text editor. It doesn't look very
pretty. But there are tools on Mac already built in PLIST Editor, PLIST Buddy, Xcode opens it by
default as well to kind of read those. A handful of tools that actually do that. So obviously storing
them locally is an issue. That data becomes just as accessible as any of the other data we kind
of looked at. So if you're storing API keys, usernames, passwords, anything like that, that data is
kind of accessible.

(26:15)
So how are we going to go about exploiting those local PLIST as well? You got your two
locations. One, your IPA. You're going to unzip your IPA, which I'm not going to show because
we don't have an application that actually does that, where they actually expose sensitive data.
But for an IPA, you can just unzip that and go into the package contents, the actual app file, and
then you'll just see a file called info.PLIST or potentially look for other PLIST files within there.
Or we can go look at the data directory, which we've already looked at,
VAR/mobile/containers/data/application, find that directory. In this case it's documents within
there and then you just look for that file. So on a quick demo here, we can go in and we can
look for this PLIST data. If we store Corellium username, Corellium password, and we save this

in a PLIST file, if I actually go in and I go into documents, there is this userinfo.PLIST. That's
where they're storing that info and it's going to launch an Xcode. Which if anyone's used it,
Xcode is not the fastest tool to open. So just take a second here. But what you will see is the
data being stored here as well.

(27:34)
I'll just give it one sec. And there you go. So it brings it up. It's easily readable. Like I said,
PLIST, they're not really protecting your data in any way. It's easily accessible to read that data
within Xcode. There are additional tools that do that as well. I think you can actually preview the
files. You can actually preview the files right in Mac and you can actually see that data as well.
So there are a few ways to get that data and your data is really not protected unless it's being
encrypted. Now you could use a lot of the mechanisms we kind of talked about and just while I
talk, I'm going to power up this Android device. A lot of the methods we kind of talked about in
iOS really can be used by applications, but your data still needs to be protected in some way.

(28:29)
You do need to encrypt it. If you have a database, encrypt the database or encrypt the data
within the database. If you're going to use the Keychain, use the correct keys to kind of protect
that data or encrypt it in the Keychain or do both. If you're going to use NSUserDefaults, I mean
typically I wouldn't store data in there anyway, but if an application is going to use it, take the
next step of trying to encrypt that data, try to protect it. Because what you'll notice from
this—and I think we spent, I don’t know, 25 minutes—but what you'll notice from that time is that
we were able to exploit data from a bunch of different sources within iOS with minimal
effort—less than half an hour. Now I know this is a vulnerable app, but those same concepts
apply to any public application. So it really just ensures that your data is obviously protected
because it is easily accessible, it is easily reviewed, especially within Corellium or third-party
tools. So I'll just stop for a second and see if there's any questions on the iOS stuff before we
jump into Android.

(29:34)
Brian Robison: There aren't any in the Q&A, but again people, if you'd like to ask some
questions, please go ahead. The questions that have been answered so far, the screen is
difficult to read. So if you go back to terminal, Steven, just click command plus a few times to
make the font size big.

Steven Smiley (29:50): Yeah, that sounds good. So it looks like we did have one question here
from Sean. What is the purpose of having so many places to store the data? Why not just show
the information like themes and other config data in the Keychain? I mean, it is a great question.
Really, iOS gives you the ability to kind of do this depending on the sensitivity level of the data.
So what iOS recommends, if you kind of read their documentation, what they recommend is if
your data is sensitive, you store it in the Keychain, right? You want keys, OAuth tokens, credit
cards, passwords, whatever you need to store that's sensitive. It should be stored in the
Keychain and protected. Now, how that should be stored in the Keychain is up to them.

NSUserDefaults should be used for themes and just general preferences and stuff because it's
an easy place to access no overhead, it's very quick.

(30:44)
But again, people took that as the ability to store other data in there. So should it be done? No,
but is it done? Definitely all the time. PLIST files, same thing. It is really the preference files that
are meant to be used for data. So if you look at the info.PLIST, it's used for things like iPhone
versus iPad, the orientation of your application, the minimum version, just some generic stuff for
your application, some configuration options, some settings basically. But people have taken
that to say, okay, well, if other stuff is stored in there, why can't I store my data in there? So
they're doing it. Well, you're right, we should store the data in one. The answer really is
overhead. So Apple kind of separates it—their settings, their themes, there's security stuff,
everything for them. And then developers took that as, okay, well I can go ahead and actually
store other data there, whether it's because it's quicker for them, or because it's easier to
integrate with.

(31:44)
There could be a number of reasons. I'm not a developer so I can't really figure out why they've
done it. But what I can tell you from a pen testing perspective is that tons of applications store
data in every sort of way. So in a pen test or an AppSec assessment, you kind of have to go
through every one because you don't know what people are going to do. And I wouldn't be
surprised. You'll find stuff everywhere and that could be sensitive stuff, it could be nonsensitive,
but you will find data all over different applications. I hope that kind of answered that question.

Brian Robison: Yeah, there's a follow-up question there as well. Steven, if you'd like to address
that.

(32:25)
Steven Smiley: Oh, sure. When a developer submits an application to the AppStore, does
Apple ever comment on things like this? For instance, a rejection application? Typically, no.
Unless they see something glaring, Apple really has their policies and stuff like that. So as long
as you're following everything that Apple wants, not over obfuscating, not trying to do something
malicious, not trying to do something that goes against their policies, they really don't care what
you do with the rest of your data. If you decide to store your stuff in a PLIST, that's up to you. If
you decide to put your stuff in NSUserDefaults go right ahead. If you decide not to encrypt your
data, they're okay with that. So Apple's really not going to stop you unless you're going against
their kind of terms and conditions.

(33:14)
But yeah, pretty much for the majority, for everything I showed, Apple pretty much isn't going to
stop you if you store your data any of those ways. We saw that Keychain data can be listed as
well. So do we need to store credentials in Keychain, in encrypted format? Yeah, so really
there's two steps to that. One, you should go to Keychain first for your data. For sensitive data,

that should be where it's stored. That's just a common practice for Apple and for iOS, that's
normal. Now, if it is really sensitive data, we saw how easy it is to dump that Keychain. So
there's a couple options. One set a key of how you want to protect that data, but there are some
user issues with that because you could be requesting biometrics. So if someone's in the
application and they need to load their account and see their credit card and that's stored in the
Keychain, they may be prompted for the fingerprint and they might not like that. So there's a
user experience thing that also comes into play. So what I would suggest and what I've seen a
lot of applications do is encrypt that data just within the Keychain. Then what you can say is you
can set a key that says, okay, as long as the device is unlocked, everyone has access. That's
totally fine, but the data is encrypted in such a way that nobody can really decrypt it or figure out
what is actually being stored there.

(34:30)
Is it possible to install an application from TestFlight in Corellium? So we don't actually support
TestFlight directly. There's some FairPlay encryption stuff. I think we have an article on it. Maybe
Brian can quote that if he has it handy, but we don't support it directly. So you will need the IPA
whether you guys are testing through a third party and they can provide you the IPA or your dev
team can pull it out and do it. And then if there's issues with signing, we can work with that. Or
we've written a recent article as well that you can review about how iOS signing is done and
some of the ways around that if you need to get that IPA and there's some concerns there.

(35:11)
Brian Robison:
Yes, basically due to the DRM, we can't crack the DRM for you. There are multiple ways of
doing it as well as accessing, but basically, as Steven said, you need an unencrypted IPA file.
Most people get those from the developers themselves. But if your customer is forcing you to
use their public app store version—which is an interesting concept because if you're doing app
pen testing on a public app store version, then what value are you really providing to that
business, right? You're too late. Essentially, these companies need to look at building their app
pentesting into their DevOps strategy so that the app gets pentested before it gets posted to the
public app store. But in any case, there are ways that you can essentially get around some of
the Apple encryption, but we do not do that for you. And as Steven said, yes, actually Steven
did post a blog that was posted earlier this week on our blog site, so please check that out about
app signing and issues with Apple and installing apps on Corellium. Virtual devices, all those
kinds of things are covered there as well. So keep an eye on our blogs. There's actually a
couple more blogs coming out this week as well, so keep an eye there. Back to you.

(36:36)
Steven Smiley:
Awesome. So yeah, if there's no more questions, I'll continue with Android and then we will go
over some questions again at the end and we'll leave some time for that. And Brian, just to note,
you're really quiet for me. I don't know if that's for everybody else, but I just thought I'd let you
know.

(36:51)
Brian Robison:
Fixed.

(36:52)
Steven Smiley:
Perfect, there you go. Okay, so we'll move on to Android data storage. So Android, same thing.
It's all about how your data is being stored and protected within your device. Now for Android,
they don't have the Keychain, it's not as easily accessible. They do have the KeyStore which is
actually quite well protected and actually the default spot that you should be storing any sort of
sensitive data. But what we've seen on that topic is that there are three common places where
we've seen data be stored, and that is the shared preferences, the external storage, and
different application databases. So for this one, we're not going to use the DVIA application,
although there is one for Android and you can actually go get one if you do want to try it out. But
what we're going to try to focus on is the MASTG-hacking-playground application. This one is
also freely available so you can actually get it on GitHub, but this one was kind of built to go
over the mobile security testing guide from OWASP and some of their common vulnerabilities.
So it does a really good job of showcasing what we want to go through today. So yeah, we'll just
hop into that.

(38:06)
So the first one is the Android shared preferences. So the shared preferences is really just an
XML file to store private primitive data in key value pairs. That data could be anything from
Boolean, floats, integers, long or strings, it really doesn't matter. You can pretty much store
everything. So you'll see a large amount of data within shared preferences for every application.
Now, similar to what you saw with iOS is that, when you're in your shared preferences, there
should just be common data in there, just really simple things, whether it be preferences,
whether it be anything you kind of saw in iOS that was not sensitive, but what they shouldn't be
storing here is obviously anything sensitive—configuration data, API keys, user information,
credit cards, location, anything really that should obviously not be stored within that application.
Now the shared preferences can be world readable, so it is one thing to check, it doesn't have to
be, it can be actually private if it is world readable. That word speaks for itself; it's just accessible
to every application and anyone on the device can access that and read the data that's in there.
So obviously storing something sensitive with world readable not where we want to go.

(39:34)
So where's the shared preferences stored? Where would you find it? That's in the data directory,
which if you guys have ever been on Android and kind of ran through the data directories, it's
much simpler to find. So you always go in /data/data that's common. And then there's a
<package name>. Now most package names are fairly obvious. You can actually go through
and scroll. A lot of times it's a com.example.app or something like that. So a lot of times even
just scrolling through, you can figure out the name. And then there's the shared preferences

directory. Now, similar to iOS, if you aren't aware of the package name—which iOS is actually
harder to find the package name than Android—you can use the Corellium apps tab, same as
we saw on iOS. You'll be able to see the package name of any app that is installed, or you could
just scroll through the list because typically it's fairly obvious which one it is just based on the
name of your application.

(40:33)
But those are two options. You can also use Objection as well. Same thing for iOS. I'm actually
going to show that, but you can run the ENV command for this one as well and it'll actually show
you. So there is that possibility. Now for the shared preferences, when they're used incorrectly,
sensitive data gets stored in those XML files. Typically, like I said, generic preferences are what
should be there. A lot of times what you will see there is if someone has installed an application
and started running it. Let's say it's a banking app and I logged in with user one and a password.
Sometimes what they'll do is they'll store that data in the shared preferences, maybe at least the
username, maybe the password, even the passwords kind of less often. But a lot of times you
will see things like usernames in there, maybe some API keys, maybe some preferences of
whether you like biometrics enabled, things like that. So there is some additional information
that can kind of be gathered using the shared preferences.

(41:31)
So I have my Android device up. This is the application, which by the way, if you've never seen
it, is a really good application if you can see how many tests there are. There's just so many, but
it’s a really good application to kind of install and go through if you have some time. But for this
one, we'll share preferences. And what's kind of cool about this application is that you don't
actually need to enter anything. What happens is these files actually get created by default
when you click the challenges. So if you actually go to /data/data and then this application, see
most of them are com.android or something depending on if it's a system one or if it's something
you install publicly. These vulnerable ones have different names where it's like sg.vp, things like
that.

(42:21)
Typically a lot of them are com.examples or something like that. So for this case, we're going to
go to this app, this is the package name. We'll go to shared preferences and you will see this
key XML that got added in. And within that, that is hard to read. So I don't know why it wants to
open with Xcode, but what you'll see here is the password is super secret and the username is
administrator. So obviously storing, like I said, password in shared preferences is not ideal. That
is not where data should be stored. Now a lot of times you will see even username, which still is
a risk depending on your application. Obviously if you use an email address that's kind of fairly
public, so is that really an issue? Probably not. But if you use some username that you selected
or that's very generic, there is a potential risk there to have brute-force attacks and things like
that. So you're relying on other protections of your application to protect you in other ways. So
you need to have rate limiting and things like that to actually protect against brute-force attacks

because you have already given up the username. So those attacks are going to happen. So
obviously storing any sort of data is bad.

(43:44)
Moving on to that, we're going to talk about Android external storage. So new devices probably
don't have SD cards, at least I think most. I don't think there are many new devices that have an
SD card anymore, but every Android device still contains external storage. It's not something
you see on iOS. And this can either be an SD card or it can just be added internal storage. So
you will see a folder if you ever go into the file system of Android, you will see a
/SDcard/storagedirectory that does have some stuff in there: documents, downloads, pictures,
stuff like that. So you'll see a whole bunch of data in there. One thing to kind of note with
external storage is all files are world readable. So where this comes into play, some applications
do allow you to download data or store data within there, or they'll do it off the top of my head,
I'm thinking of banking apps where you download your statements or credit card apps and they
download locally to your device.

(44:45)
That's going to be in your external storage. If those files have sensitive information in them,
account numbers, personal information, that's world readable. So any other app or person on
the device can access that data. Where do you access it? Well, I mentioned it. So /sdcard is
common. /storage/emulated/0 is another option. It really kind of depends on your device. So that
kind of does get moved around. And one thing to note is this data, does it not get deleted when
the app gets removed? So if you have data in the data directory, like your shared preferences,
it's sensitive. If you delete the app, it's gone. Nobody's going to be able to access that. If you
have data stored within here, you downloaded stuff or your application downloaded stuff or
however it's being stored, that's not going to get deleted. So it's still at risk for as long as you
pretty much have your phone. That data is always going to be there unless you manually delete
it.

(45:51)
So if we look at the data here and we look at external storage, it's actually going to create a file.
So if you actually go to /sdcard, there is this file called password.txt which I can actually make
bigger unlike everything else. So there we go. You can see the secret password is being stored
there. Now most applications, like I mentioned, do not store stuff there by default or without
asking you. Typically it's a scenario where you're going to go ahead and download something
from there, whether it's a message attachment, credit card statements, bank statements, things
like that. So just be wary of where you're storing data and if you're storing it, just be aware that
other apps technically do have access to that and can read that data. I don't think there's many
applications out there going to try to look in your directories to look for your personal information
and exploit that. But there are malicious apps in the play store and out in the public that are
probably doing that exact thing where they're trying to look for data, trying to read data, trying to
steal data. So just something to be wary of when storing your kind of data there.

(47:05)
Android application databases. There are basically two types: unencrypted or encrypted. So
we'll talk about unencrypted first, and there are multiple types of databases, kind of like we saw
on iOS. You have your SQLite databases. Pretty common, it's been around for a long time.
You'll see it in a lot of applications. Realm: fairly new. You'll see some newer developers who are
trying to move to these newer technologies that are starting to use these. And those two have
some very common practices together that we'll kind of go through. And then you have Firebase
as well. So you'll notice that most Android applications have a Firebase project and they are
using Firebase for something, whether that's actually to store data or whether it's analytics or
any number of things they can use Firebase. Now Firebase is easily tested because what you
can actually do is you can take the Firebase link, just decompile your application, you can look
in the Android manifest, you can look through some of the code, you will see it, you can just do
strings and search for Firebase and you'll probably find it.

(48:11)
But there are a handful of ways to find that URL. Once you do, just put it in your browser, you
can add /.json, and then you'll be able to see if you have access. A lot of times they are blocked.
It's not very common anymore. There have been some public exploits where they've leaked
data. I think I've seen it a couple of times where it's been conference apps or these big
applications where they're storing a large amount of data. If they use Firebase, they don't
protect the database and then somebody has access. So that is all kind of a possibility. But for
the other ones, they're stored in your local data directory /data/data, your <package name< as
we looked at /databases. So when left unencrypted, this data is easily accessible to anybody on
the device. And I'll just kind of show that really quick.

(48:58)
We are also kind of running out of time, but if you look here, if you go to /data/data and then go
down to the application…that's not the application…that is! /databases. There is this private,
not-so-secure database which is going to open in a text editor for some reason by default, it has
no extension on it. But if you open this with a database reader, you can actually see it's in
database format as well. You will see, and actually I can make this bigger too, you will see
<adminAdminPassadminAdminPassadminAdminPass. So if you actually open this up in a
database reader—which just for the interest of time, I'm not going to do it just to save a couple
of minutes here to test the next one—but you can see the sensitive data is stored there in plain
text. You can actually not read it.

(50:03)
Now, encrypted databases, the other side of it. So obviously the answer would be to encrypt the
data within the database or encrypt the database itself. Now, if you encrypt the database itself
especially, that can still be vulnerable depending on the implementation. Now that's all going to
be dependent on a key or a passphrase. So where is that being stored? It's probably going to be
stored in the binary somewhere. It doesn't have to be. It can be stored on the web server
outside and make a request for it. And that's kind of a more secure way to do it. Or you can

store it in the Android key store, but if you store it locally, it will be exploited. It's only a matter of
time. If you leave something, a local application is going to be in the hands of thousands,
hundreds of thousands, millions of people.

(50:53)
And if that's the case, it's just a matter of time before that data gets exploited. So storing
anything locally that isn't in some sort of a proof storage like the Android KeyStore is going to be
exploited. It literally is a matter of time. So we'll take a look at that. So if you look at the SQLite
encrypted, there is an encrypted challenge which will create this encrypted database. So we can
actually download this. And what I'll do is I'm actually going to, for some reason that's—sorry,
give me half a second because I dunno why I did that.

(51:37)
Okay, so it prompts you with a password, right? It's not going to let me in the database. That is
step one. Now where is that password? We can kind of take a look for that. I won't go through
all the mechanisms as you search through. And as you do more reverse engineering, you'll see
how to go about searching for some of this data, where to look for secrets and things like that. In
this case, I've already done the research so I know where it is. If you actually go to /data/app
and then I believe it's this one, and then lib arm. So basically this application in their app
directory as well, not just their data directory, they have these shared objects. So there's
something called libnative-lib, which is a shared object on Android. And if I can't exit because I
can't spell, so if you do strings on lib-native, so if you run—trying to see if I can zoom in here.

Brian Robison: Yeah, in Terminal if you use the command plus.

Steven Smiley: That's what I still did.

(52:51)
Can anyone see that? You guys can see that maybe?

Brian Robison: Yeah, it's making it better.

Steven Smiley: Okay, so if you run strings on the command, you'll get a whole bunch of strings.
And actually, if you look through here, there is this secret string which is being stored here within
this shared object. Obviously this developer thought that nobody would look through their
shared object or nobody would actually look through their data to find that string. But once you
do, you enter it in, get access to the database, and then there's an admin that's also kind of hard
to see, but there is an admin password that is encrypted, now decrypted and ready for use. So
obviously there's another level here because you're going to have to do some reverse
engineering. You're going to have to find that key, whether it's stored in actual, in this case it be
a shared object, could have been stored in shared preferences, could have been stored in
another database, could have been stored anywhere. But obviously anything that gets stored is

eventually going to be exploited. In this case, we found the secret string, and we're able to
decrypt it. So obviously using the KeyStore would've been the better access.

(54:15)
That kind of wraps it up. So we'll kind of leave it for questions. We got four minutes so we can
ask a few questions and kind of go through some stuff.

(54:28)
Brian Robison:
Awesome. Steven, looks like there's one question in the Q&A.

Steven Smiley (54:33):
Without route access, can the data in the shared preferences be accessed by another
application? No. Quickly, the answer is no. Data is what iOS and Android have kind of done
recently is gone with the sandbox approach where your applications are kind of protected in a
way. Now, if you decide, if the developer decides to store shared preferences as globally
readable, any application will be able to read that data. That's just on them. But typically no, if
they make it private, they won't be able to see that data. Obviously if you have a rooted device,
which on Android is far more possible than on iOS, that data is very possible. Anybody's
Android phone can be reflashed, add a new firmware, jailbreak it, root the device if you need to
get access. So it is more possible, right? It's not possible on iOS, you have to have specific
versions. Corellium kind of allows you to do that, but in the public it's not as possible. So yeah, it
just depends kind of how that data is stored. If it's world readable, accessible to everybody or if
it's kind done privately. But if proper development practices are kind of taken into account that
data will be protected from other options.

Brian Robison (55:56):
And just kind of on this too, Steven, and I think that what a lot of people run into is not
necessarily bad design or bad engineering. A lot of times there are shortcuts taken during early
phases of development that are meant to be gone back and fixed. And sometimes that doesn't
happen. And that's how things like AWS credentials get shared in public apps, things like that.
So a lot of this stuff is really just double checking that engineering developed the app properly,
protecting the data properly, but as an app pen tester, being able to actually verify that and not
relying on device security is just good practice. Hands down, it's never a good idea to put all of
your data security eggs into one basket because as we all know, device security is not
impossible to overcome. And I think Steven, there is one last question that we have time for
before we need to end for today.

(57:09)
Steven Smiley:
Sure. As a tester, is there a way to identify whether the shared preferences is global readable by
doing static analysis of the code? Yes, there are a couple ways. If you're using Corellium within
the file browser, as you're going through, you can actually see the permissions and then you can

see what permissions are actually set, who has access to that, if it is world readable. If you're
going through, you could use a DB to kind of do that. Once you're in there, you can access the
actual file structure and then you could check the permissions of the file. No different than you
would on a regular terminal or command prompt where you'd actually list the files and list the
permissions kind of associated with those. So there are a couple kinds of options for taking a
look at that. And then if you're running it through some sort of test, you could use something like
MobSF. If you want something more automated like a MobSF Scanner can also flag those kinds
of vulnerabilities as well if you have permissions. But it just depends how you want to look at it
or what kind of tools you're using as you go along.

Brian Robison (58:21):
Outstanding. Thank you very much, Steven, for all of the wonderful content from today. Thank
you everybody for hanging out on episode two of our webinar. Again, check our Events Page at
Corellium.com/events for recordings of past webinars as well as where to sign up for new
webinars that we're going to be doing a month from now. The week before Thanksgiving here in
the US will be our next webinar and we're going to be discussing vulnerabilities where data is in
transit, data in motion, so over the network. And Steven and I look forward to seeing you on our
November webinar. Thank you all very much. And have a fantastic day.

#####

